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Introduction: Who cares?

In 2012 Hurricane Sandy made
landfall near NY, causing 53 fa-
talities and $50 billion in damage
(FEMA P-942) It has been ac-
knowledged that error in model
simulation, caused by uncertain-
ties in model inputs, was the
main culprit in accurately forecast-
ing Sandy (McNally et al. 2014,
Bassill 2014, Cohn 2015).
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Data Assimilation

Data assimilation are methods
that combine information from a
model, observational data, and
corresponding error statistics, to
provide an estimate of the true
state of a system as accurately as
possible.
These methodologies are used in
a wide range of problems, such
as:

Weather prediction
Hurricane simulation and
forecasting
Radiation belt simulation
Solar Physics
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Optimization for DA
The main idea is to minimize a
cost or penalty function J which
is defined as

J (x0) = ‖yo − xi‖

where

x (ti) =Mt0→ti (x (t0)) (1)

The solution of this minimization
problem is performed iteratively
with a Newton type technique
(steepest decent). The analysis is
the minimum of the cost function

xa = argmin
x0∈Rn

J (x)

Tangent and Adjoint are needed
for both methods!!
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Adjoint Models for Derivatives

Input

x0 Mt0→tv

Output

xv

Input

x0 + δx0 Mt0→tv

Output

xv + δxv

Tangent (first order derivatives) of functions (any input-output relation) can
be computed through definition of adjoint variables
Methods for computing derivatives include:

Deterministic:(Sensitivity Analysis,
dxv

dx0
≈ δxv

δx0
)

Form set of Ordinary Differential Equations (ODE) to approximate
derivative of model w.r.t. parameters
Automatic Differentiation (AD)

Statistical:(Uncertainty Quantification)
Monte-Carlo methods
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Tangent Linear Model

Dynamical system

dx
dt

= f (t, x; p) (2a)

x (t0) = x0, t0 ≤ t ≤ tf (2b)

where p are the model parameters. Notice x = x (t; x0, p). For δx0 ⇒ δx, the

sensitivity is defined s (t) =
∂x
∂x0

. Differentiating (2) wrt y0 we obtain the

Tangent Linear Model (TLM)

ds
dt

=
∂f
∂x

(t, x; p) s (3a)

s (t0) = ei (3b)

The solution s (t) provides with the forward sensitivity.
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Adjoint Model

Some applications require the sensitivity of a scalar response functional
J = J (x (tf )). A perturbation δx0 generates δJ = J (xf + δxf )− J (xf )
To a first order approximation

δJ =
〈
∇xfJ (xf ) , δxf

〉
= 〈∇x0J (xf ) , δx0〉 (4)

δxf can be computed through the TLM

dδx
dt

=
∂f
∂x

(t, x; p) δx (5)

δx (t0) = δx0 (6)

Introduce λ, take inner product of (5)-(6), integrate on [t0, tf ] to obtain∫ tf

t0

〈
λ,

dδx
dt

〉
dt =

∫ tf

t0

〈
λ,
∂f
∂x

(t, x; p) δx
〉

dt
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∫ tf

t0

〈
λ,

dδx
dt

〉
dt =

∫ tf

t0

〈[
∂f
∂x

(t, x; p)

]∗
λ, δx

〉
dt

integrating the left side by parts

〈λ, δx〉|tft0 =

∫ tf

t0

〈
dλ
dt

+

[
∂f
∂x

(t, x; p)

]∗
λ, δx

〉
dt (7)

define λ as the solution of the First Order Adjoint (FOA) system

dλ
dt

= −
[
∂f
∂x

(t, x; p)

]∗
λ (8)

λ (tf ) = ∇xfJ (xf ) , tf ≥ t ≥ t0 (9)

equation (7) reduces to〈
∇xfJ (xf ) , δxf

〉
= 〈λ0, δx0〉 = δJ

To obtain the sensitivity we integrate (8)-(9) backward only once and
compute the inner product for any δx0.
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The solution of the FOA equations λ0 gives the gradient of J with respect to
x0

δJ = 〈∇x0J (xf ) , δx0〉 = 〈λ0, δx0〉
so we have that

λ0 = ∇x0J (xf )
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Graphical representation

t

t0

ti

tf

t

t0

ti

tf
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Implementation of Tangent and Adjoint Models

Continuous tangent and adjoint
Does not depend on code
Has to be discretized and solved separately
Discretization has to be consistent

Discrete tangent and adjoint (Automatic Differentiation)
Depends on code
Consistency
TAMC, ADIFOR,etc..
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Automatic Differentiation

Computational technique to obtain the tangent linear model or adjoint
model of a code that is smooth or differentiable.
View code as a function with input variables and output variables.
Use basic rules of differential calculus to obtain tangent code line by
line.

Algorithm 1 Forward Model
1: functionM(x,y,z)
2: z = sin x + y2

3: end function

Algorithm 2 Tangent Model
1: function M(x,y,z,δx,δy,δz)
2: δz = cos (x)δx + 2yδy
3: z = sin x + y2

4: end function
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δz =
(
cos (x) 2y

)(δx
δy

) (
δx∗

δy∗

)
=

(
cos (x)

2y

)
δz∗

Algorithm 3 Tangent Model
1: function M(x,y,z,δx,δy,δz)
2: δz = cos (x)δx + 2yδy
3: z = sin x + y2

4: end function

Algorithm 4 Adjoint Model
1: function M∗(x,y,δx∗,δy∗,δz∗)
2: δx∗ = cos (x)δz∗ + δx∗

3: δy∗ = 2yδz∗ + δy∗

4: δz∗ = 0.0
5: end function
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Discrete Tangent

In practice, the system (2) is solved numerically, so a discrete version of the
adjoint is needed.
Let

xi+1 =Mi (xi) , i = 0, . . . ,N − 1 (10)

be the discrete time evolution of the system (2) after a time discretization is
applied. Let Mi be the discrete tangent linear model ofMi, i.e.

Mi (xi) =
∂Mi

∂xi
(xi) (11)

Using (11) the discrete Tangent Linear Model (TLM) is given by

µ0 = w (12)
µi+1 = Mi (xi)µi, i = 0, . . . ,N − 1, (13)
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Discrete Adjoint

Let J = J (xN) be a response functional. Introduce δx0 ⇒ δJ (xN), as
before

δJ = 〈∇x0J (xN) , δx0〉
We want to compute ∇x0J (xN). Using the chain rule we have

∇x0J (xN) = ∇x0 x1∇x1 x2 · · · ∇xN−1 xN∇xNJ (xN)

Notice

∇xi xi+1 =

(
∂xi+1

∂xi

)T

=

(
∂Mi

∂xi
(xi)

)T

= MT
i (xi)

where MT
i is the discrete adjoint of Mi.
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Using this in the previous expression, we have

∇x0J (xN) = MT
0 (x0) MT

1 (x1) · · ·MT
N−1 (xN−1)∇xNJ (xN)

Define a variable λi that satisfies

λi = MT
i (xi)λi+1, i = N − 1, . . . , 0 (14)

λN = ∇xNJ (xN) (15)

this is the discrete FOA model of (10) and is integrated backwards in time.
As with the continuous case λ0 = ∇x0J (xN)
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Discrete Computation of TLM and FOA

TLM w M0 (x0) µ1 M1 (x1) µ2 · · · µN−1 MN−1 (xN−1) µN

forward model x0 M0 (x0) x1 M1 (x1) x2 · · · xN−1 MN−1 (xN−1) xN

FOA λ0 M∗
0 (x0) λ1 M∗

1 (x1) λ2 · · · λN−1 M∗
N−1 (xN−1) λN

Figure: Flow chart for the computation of the tangent linear model and the adjoint
model.
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Four Dimensional Variational Method

t0

xb
0

xb
vxa

0

xa
v

*y0
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y1

*y2

*
y3

t1
|

t2
|

t3
|

tv

The four dimensional variational data assimilation (4D-Var) considers all
observations in a given time window to compute an updated model solution.
The methodology is to optimize a cost function J with respect to initial
conditions, parameters, boundary conditions, etc.
The cost function then becomes

J (x) =
(
x− xf )T (Pf )−1 (x− xf )+

T∑
k=1

(yo
k −Hkxk)

T R−1
k (yo

k −Hkxk)
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2-D Shallow Water Model

A global 2D shallow water (SW) model on a sphere is used for the
numerical experiments.

Model describes hydrodynamic flow on a sphere assuming vertical
motion is much smaller than horizontal motion.
Assume fluid depth is small compared with radius of the sphere (radius
of Earth).
Computations done on a 2.5◦ × 2.5◦ grid with a time step ∆t = 450s.
xt

0: trajectory produced by SW integration with I.C. taken from ERA-40
for March 15 2002 at 06 : 00h.
TLM and FOA obtained with automatic differentiation (TAMC).
20 leading eigenpairs of M∗EM computed with ARPACK.

Compute sensitivity of the SW model with respect to initial conditions.
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Gradient Fields for SW

Figure: Gradient fields computed with a final time tN = t0 = 24h. Right figure:
sensitivity field at ti = t0 left figure: sensitivity field at ti = t0 + 6h
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Data Assimilation - 24h forecast error

52 54 56 58 60 62 64 66

latitude
0

20

40

60

80

100

fo
re

ca
st

er
ro

r

no DA
FOA obs
SOA obs

−55 −50 −45 −40 −35
longitude

0

10

20

30

40

50

60

70

80

fo
re

ca
st

er
ro

r

no DA
FOA obs
SOA obs

Figure: Longitudinal (left) and latitudinal (right) forecast error average over the target
domain.

4D-Var data assimilation for SW with assimilation window [0h, 6h].
Experiment with 20 adaptive observations at t = 0 and 6 hours.
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Conclusions

Adjoint models are extremely helpful for optimization problems
Such optimization problems arise in data assimilation, where
dimension of models are very high (107–109)
Different form of adjoint computation can be performed, either discrete
or continuous
Automatic differentiation is a very useful tool for computing discrete
adjoint models of complex code

Challenges ahead
complex dynamical models with parameterizations are challenging for
computing adjoint models
significant up-front cost for developing and later maintaining adjoint
models
no actual reliability index associated with adjoint models
models with incomplete physics→ models error are challenging for
adjoint information
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